

https://doi.org/10.26637/MJM0804/0176

Connected 2-domination polynomials of some graph operations

T. Anitha Baby ¹* and Y. A. Shiny²

Abstract

In this paper, we derive the connected 2-domination polynomials of some graph operations. The connected 2-domination polynomial of a graph G of order *m* is the polynomial $D_{c2}(G,x) = \sum_{j=\gamma_{c_2}(G)}^m d_{c2}(G,j)x^j$, where $d_{c2}(G,j)$ is the number of connected 2-dominating sets of *G* of size *j* and $\gamma_{c2}(G)$ is the connected 2-domination number of *G*.

Keywords

Corona, connected 2-dominating sets, connected 2-domination polynomials, connected 2-domination number.

AMS Subject Classification 53C05.

^{1,2} Department of Mathematics, Women's Christian College, Nagercoil-629001, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti-Tirunelveli-627012.

*Corresponding author: ¹ anithasteve@gmail.com; ²shinyjebalin@gmail.com Article History: Received 12 October 2020; Accepted 29 December 2020

©2020 MJM.

Contents

1	Introduction
2	Connected 2-Domination Polynomials of Some graph Operations
3	Conclusion2332
	References 2332

1. Introduction

Let G = (V, E) be a simple graph of order, |V| = m. For any vertex $v \in V$, the open neighbourhood of v is the set $N(v) = \{u \in V/uv \in E\}$ and the closed neighbourhood of v is the set $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighbourhood of S is $N(S) = \bigcup_{v \in S} N(v)$ and the closed neighbourhood of S is $N(S) \cup S$.

A set $D \subseteq V$ is a dominating set of G, if N[D] = V or equivalently, every vertex in V - D is adjacent to atleast one vertex in D.

The domination number of a graph G is defined as the cardinality of a minimum dominating set D of vertices in G and is denoted by $\gamma(G)$.

A dominating set *D* of *G* is called a connected dominating set if the induced sub-graph $\langle D \rangle$ is connected.

The connected domination number of a graph G is defined as the cardinality of a minimum connected dominating set D of vertices in G and is denoted by $\gamma_c(G)$. **Definition 1.1.** A walk is called a trail if all the edges appearing in the walk are distinct. It is called a path, if all the vertices are distinct; P_m denotes a path on m vertices. A cycle is a closed trail in which the vertices are all distinct; C_m denotes a cycle on m vertices.

Definition 1.2. The complement \overline{G} of G is the graph whose vertex set is V(G) and such that for each pair u, v of vertices of G, uv is an edge of \overline{G} if and only if uv is not an edge of G.

Definition 1.3. The complete graph on m vertices, denoted by K_m is the simple graph that contains exactly one edge between each pair of distinct vertices.

Definition 1.4. The corona of two graphs G_1 and G_2 is denoted by $G_1 \circ G_2$, formed from one copy of G_1 and $|V(G_1)|$ copies of G_2 , where the j^{th} vertex of G_1 is adjacent to every vertex in the j^{th} copy of G_2 . The corona, $G \circ K_1$, in particular, is the graph constructed from a copy of G, where for each vertex $v \in V(G)$, a new vertex v' and a pendant edge vv' are added.

Definition 1.5. Let G and H be two graphs. G adding H at u and v is defined as the graph with $V(G_u \oplus H_v) = V(G) \cup V(H)$ and $E(G_u \oplus H_v) = E(G) \cup E(H) + uv$ and is denoted by $G_u \oplus$ H_v . G joining H at u and v denoted by $G_u \odot H_v$ is obtained from $G_u \oplus H_v$ by contracting the edge uv.

Definition 1.6. Let G_1 and G_2 be two graphs. The composition of $G_1[G_2]$ is a graph with the vertex set $V_1 \times V_2$ and

two vertices $(u_1, u_2), (v_1, v_2)$ are adjacent if $u_1 = v_1$ and u_2 is adjacent to v_2 or u_1 is adjacent to v_1 .

2. Connected 2-Domination Polynomials of Some graph Operations

In this section, we state the connected 2- domination polynomial and derive the connected 2- domination polynomials of some graph operations.

Definition 2.1. Let G be a simple graph of order m with no isolated vertices. A subset $D \subseteq V$ is a 2- dominating set of the graph G if every vertex $v \in V - D$ is adjacent to atleast two vertices in D. A 2-dominating set is called a connected 2-dominating set if the induced subgraph < D > is connected.

Definition 2.2. Let $D_{c2}(G, j)$ be the family of connected 2dominating sets of the graph G with cardinality j. Then the connected 2-domination number of G is defined as the minimum cardinality taken over all connected 2-dominating sets of vertices in G and is denoted by $\gamma_{c2}(G)$.

Definition 2.3. Let $D_{c2}(G, j)$ be the family of connected 2dominating sets of the graph G with cardinality j and let $d_{c2}(G, j) = |D_{c2}(G, j)|$. Then the connected 2-domination polynomial $D_{c2}(G, x)$ of G is defined as $D_{c2}(G, x) = \sum_{j=\gamma_{c2}(G)}^{|V(G)|} d_{c2}(G, j)x^j$, where $\gamma_{c2}(G)$ is the connected 2-domination number of G.

Theorem 2.4. *The connected 2-domination polynomial of* $P_2[K_m]$ *is* $D_{c_2}(P_2[K_m], x) = (1+x)^{2m} - (1+2mx).$

Proof. Let P_2 be the path with order 2 and K_m be the complete graph with order *m*. Then, $P_2[K_m]$ has 2m vertices.

Let $\{v_1, v_2\}$ be the vertices of P_2 and $\{u_1, u_2, ..., u_m\}$ be the vertices of K_m .

Then, $V(P_2[K_m]) = \{(v_1, u_1), (v_1, u_2), (v_1, u_3), ..., (v_1, u_m), (v_2, (v_2, u_2), ..., (v_2, u_3), ..., (v_2, u_m)\}$

The minimum cardinality of $P_2[K_m]$ is $\gamma_{c_2}(P_2[K_m]) = 2$.

There are $\binom{2m}{j}$ possibilities of connected 2-dominating sets of $P_2[K_m]$ of cardinality *j*.

Hence,
$$D_{c_2}(P_2[K_m], x) = \sum_{j=\gamma_{c_2}(P_2[K_m])|}^{|V(P_2[K_m])|} d_{c_2}(P_2[K_m], j) x^j$$

 $= \sum_{j=2}^{2m} d_{c_2}(P_2[K_m], j) x^j$
 $= {\binom{2m}{2}} x^2 + {\binom{2m}{3}} x^3 + {\binom{2m}{4}} x^4 + \dots + {\binom{2m}{2m-1}} x^{2m-1} + {\binom{2m}{2m}} x^{2m}$
 $= [\sum_{j=0}^{2m} {\binom{2m}{j}} x^j] - 1 - 2mx$
Hence, $D_{c_2}(P_2[K_m], x) = (1+x)^{2m} - (1+2mx)$.

Example 2.5. For the graphs P_2 and K_3 given in Figure 1.3, the graph $P_2[K_3]$ is given in Figure 1.4.

The connected 2-dominating sets of $P_2[K_3]$ of cardinality 2 are $\{\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{2,3\},\{2,4\},\{2,5\},$ $\{2,6\},\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{4,6\},\{5,6\}\}.$ *Therefore*, $d_{c_2}(P_2[K_3], 2) = 15$. The connected 2-dominating sets of $P_2[K_3]$ of cardinality 3 *are* $\{\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,2,6\},\{1,3,4\},\{1,3,5\},$ $\{1,3,6\},\{1,4,5\},\{1,4,6\},\{1,5,6\},\{2,3,4\},\{2,3,5\},\{2,3,6\},$ $\{2,4,5\},\{2,4,6\},\{2,5,6\},\{3,4,5\},\{3,4,6\},\{3,5,6\},\{4,5,6\}\}.$ *Therefore*, $d_{c_2}(P_2[K_3], 3) = 20$. The connected 2-dominating sets of $P_2[K_3]$ of cardinality 4 are $\{\{1,2,3,4\},\{1,2,3,5\},\{1,2,3,6\},\{1,2,4,5\},\{1,2,4,6\},$ $\{1,2,5,6\},\{1,3,4,5\},\{1,3,4,6\},\{1,3,5,6\},\{1,4,5,6\},\{2,3,6\},\{1,4,5,6\},\{2,3,6\},$ 4,5, $\{2,3,4,6\}$, $\{2,3,5,6\}$, $\{2,4,5,6\}$, $\{3,4,5,6\}$. *Therefore*, $d_{c_2}(P_2[K_3], 4) = 15$. The connected 2-dominating sets of $P_2[K_3]$ of cardinality 5 *are* {{1,2,3,4,5}, {1,2,3,4,6}, {1,2,3,5,6}, {1,2,4,5,6}, {1,3, 4,5,6, $\{2,3,4,5,6\}$. *Therefore*, $d_{c_2}(P_2[K_3], 5) = 6$. The connected 2-dominating set of $P_2[K_3]$ of cardinality 6 *is* {1,2,3,4,5,6}.

Therefore, $d_{c_2}(P_2[K_3], 6) = 1$. Since, the minimum cardinality is $2, \gamma(c_2)(P_2[K_3]) = 2$.

$$\begin{split} {}_{\mathcal{U}_1} Therefore, D_{c_2}(P_2[K_3], x) &= \sum_{j=\gamma_{c_2}(P_2[K_3])}^{|V(P_2[K_3])|} d_{c_2}(P_2[K_3], j) x^j \\ &= \sum_{j=2}^6 d_{c_2}(P_2[K_3], j) x^j \\ &= 15x^2 + 20x^3 + 15x^4 + 6x^5 + x^6. \\ Hence, D_{c_2}(P_2[K_3], x) &= (1+x)^6 - (1+6x). \end{split}$$

Theorem 2.6. The connected 2-domination polynomial of $C_m \odot C_n$ is

$$D_{c_2}(C_m \odot C_n, x) = 2(m+n-4)x^{m+n-3} + (m+n-2)x^{m+n-2} + x^{m+n-1}.$$

Proof. Let $\{u_1, u_2, ..., u_{m-1}, u\}$ be the vertex set of C_m and let $\{v_1, v_2, ..., v_{n-1}, v\}$ be the vertex set of C_n . Therefore, $\{u_1, u_2, ..., u_{m-1}, u = v, v_1, v_2, ..., v_{n-1}\}$ be the vertex set of $C_m \odot C_n$.

Hence, $C_m \odot C_n$ has m + n - 1 vertices.

There is no connected 2-dominating sets of cardinality less than m + n - 3.

There are 2(m+n-4) connected 2-dominating sets of cardinality m+n-3.

Therefore, $d_{c_2}(C_m \odot C_n, m+n-3) = 2(m+n-4)$.

There are m + n - 2 connected 2-dominating sets of cardinality m + n - 2.

Therefore, $d_{c_2}(C_m \odot C_n, m + n - 2) = m + n - 2$.

There is only one connected 2-dominating sets of cardinality m + n - 1.

Therefore, $d_{c_2}(C_m \odot C_n, m+n-1) = 1$. Since, the minimum cardinality is m+n-3, $\gamma_{c_2}(C_m \odot C_n) = m+n-3$. Therefore, $D_{c_2}(C_m \odot C_n, x) = \sum_{j=m+n-3}^{m+n-1} d_{c_2}(C_m \odot C_n, j)x^j$ $= d_{c_2}(C_m \odot C_n, m+n-3)x^{m+n-3} + d_{c_2}(C_m \odot C_n, m+n-2)x^{m+n-2} + d_{c_2}(C_m \odot C_n, m+n-1)x^{m+n-1}$ Hence, $D_{c_2}(C_m \odot C_n, x) = 2(m+n-4)x^{m+n-3} + (m+n-2)x^{m+n-2} + x^{m+n-1}$.

Example 2.7. For the graphs C_3 and C_4 given in Figure 1.5, the graph $C_3 \odot C_4$ is given in Figure 1.6.

There is no connected 2-dominating sets of $C_3 \odot C_4$ of cardinality 2 and 3.

$$= \sum_{j=4}^{6} d_{c_2} (C_3 \odot C_4, j) x^j$$

= $6x^4 + 5x^5 + x^6$.
Hence, $D_{c_2} (C_3 \odot C_4, x) = 6x^4 + 5x^5 + x^6$.

Theorem 2.8. The connected 2-domination polynomial of $C_m \oplus C_n$ is $D_{c_2}(C_m \oplus C_n, x) = 2(m+n-4)x^{m+n-2} + (m+n-2)x^{m+n-1} + x^{m+n}$.

Proof. Let $\{u_1, u_2, \dots, u_{m-1}, u\}$ be the vertex set of C_m and $\{v_1, v_2, \dots, v_{n-1}, v\}$ be the vertex set of C_n .

Therefore, $\{u_1, u_2, ..., u_{m-1}, u, v, v_1, v_2, ..., v_{n-1}\}$ be the vertex set of $C_m \oplus C_n$.

Hence, $C_m \oplus C_n$ has m + n vertices.

There is no connected 2-dominating sets of cardinality less than m + n - 2.

There are 2(m+n-4) connected 2-dominating sets of cardinality m+n-2.

Therefore, $d_{c_2}(C_m \oplus C_n, m + n - 2) = 2(m + n - 4)$.

There are m + n - 2 connected 2-dominating sets of cardinality m + n - 1.

Therefore, $d_{c_2}(C_m \oplus C_n, m + n - 1) = m + n - 2$.

There is only one connected 2-dominating set of cardinality m+n.

Therefore, $d_{c_2}(C_m \oplus C_n, m+n) = 1$.

Since, the minimum cardinality is m + n - 2, $\gamma_{c_2}(C_m \oplus C_n) = m + n - 2$.

Therefore,

$$\begin{aligned} D_{c_2}(C_m \oplus C_n, x) &= \sum_{j=m+n-2}^{m+n} d_{c_2}(C_m \oplus C_n, j) x^j \\ &= d_{c_2}(C_m \oplus C_n, m+n-2) x^{m+n-2} + \\ d_{c_2}(C_m \oplus C_n, m+n-1) x^{m+n-1} + \\ d_{c_2}(C_m \oplus C_n, m+n) x^{m+n} \\ \text{Hence, } D_{c_2}(C_m \oplus C_n, x) &= 2(m+n-4) x^{m+n-2} + (m+n-2) x^{m+n-1} + x^{m+n}. \end{aligned}$$

Example 2.9. For the graphs C_3 and C_4 given in Figure 1.7 the graph $C_3 \oplus C_4$ is given in Figure 1.8.

There is no connected 2-dominating sets of $C_3 \oplus C_4$ of cardinality 2, 3 and 4.

The connected 2-dominating sets of $C_3 \oplus C_4$ of cardinality 5 are

 $\{\{v_1, v_3, v_4, v_5, v_6\}, \{v_1, v_3, v_4, v_5, v_7\}, \{v_1, v_3, v_4, v_6, v_7\}, \{v_2, v_3, v_4, v_5, v_6\}, \{v_2, v_3, v_4, v_5, v_7\}, \{v_2, v_3, v_4, v_6, v_7\}\}.$ *Therefore*, $d_{c_2}(C_3 \oplus C_{4,5}) = 6$. *The connected 2-dominating sets of* $C_3 \oplus C_4$ *of cardinality* 6

are {{ $v_1, v_2, v_3, v_4, v_5, v_6$ }, { $v_1, v_2, v_3, v_4, v_5, v_7$ }, { v_1, v_2, v_3, v_4, v_6 ,

 $\begin{array}{l} v_7 \}, \{v_1, v_3, v_4, v_5, v_6, v_7\}, \{v_2, v_3, v_4, v_5, v_6, v_7\} \}. \\ Therefore, \ d_{c_2}(C_3 \oplus C_{4,6}) = 5. \\ The connected 2-dominating set of \ C_3 \oplus C_4 \ of \ cardinality \ 7 \ is \\ \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}. \\ Therefore, \ d_{c_2}(C_3 \oplus C_{4,7}) = 1. \\ Since, \ the \ minimum \ cardinality \ is \ 5, \gamma_{c_2}(C_3 \oplus C_4) = 5. \\ Therefore, \ D_{c_2}(C_3 \oplus C_4, x) = \sum_{j=\gamma_{c_2}(C_3 \oplus C_4)}^{|V(C_3 \oplus C_4)|} \ d_{c_2}(C_3 \oplus C_4, j) x^j \\ = \sum_{j=5}^7 d_{c_2}(C_3 \oplus C_4, j) x^j = 6x^5 + 5x^6 + x^7. \\ Hence, \ D_{c_2}(C_3 \oplus C_4, x) = 6x^5 + 5x^6 + x^7. \end{array}$

Theorem 2.10. Let G be any connected graph with m vertices. Then, $D_{c_2}(G \circ K_1, x) = x^{2m}$.

Proof. Since, G has m vertices, $G \circ K_1$ has 2m vertices. There is no connected 2-dominating set of cardinality less than 2m.

Clearly, $\{v_1, v_2, ..., v_{2m}\}$ is the only connected 2-dominating set of $G \circ K_1$.

Therefore, $\gamma_{c_2}(G \circ K_1) = 2m$ and $d_{c_2}(G \circ K_1, 2m) = 1$. Hence, $D_{c_2}(G \circ K_1, x) = x^{2m}$.

Example 2.11. *Consider the graph* $C_4 \circ K_1$ *given in Figure 1.9*

There is no connected 2*- dominating sets of* $C_4 \circ K_1$ *of cardinality* 2,3,4,5,6 *and* 7*.*

The connected 2-dominating set of $C_4 \circ K_1$ with cardinality 8 is $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$. Therefore, $d_{c_2}(C_4 \circ K_1, 8) = 1$. The minimum cardinality of $C_4 \circ K_1$ is 8. Therefore, $\gamma_{c_2}(C_4 \circ K_1, x) = 8$. Hence, $D_{c_2}(C_4 \circ K_1, x) = x^8$.

Theorem 2.12. Let G be a simple graph of order n. Then the connected 2-domination polynomial of $G \circ \bar{K}_m$ is $D_{c_2}(G \circ \bar{K}_m) = x^{n(m+1)}$.

Proof. G has n vertices and \bar{K}_m has *m* vertices. $G \circ \bar{K}_m$ has n(m+1) vertices.

Any set *S* of cardinality less than n(m+1), < s > is not a connected 2-dominating set. Also, the connected 2-domination number of $G \circ \overline{K}_m$ is n(m+1).

Hence,
$$D_{c2}(G \circ \overline{K}_m, x) = x^{n(m+1)}$$
.

Example 2.13. Consider the graph $C_3 \circ \overline{K}_2$ given in Figure 1.10

There is no connected 2- dominating sets of $C_3 \circ \overline{K}_2$ of cardinality 2,3,4,5,6,7 and 8.

The connected 2-dominating set of $C_3 \circ \overline{K}_2$ with cardinality 9

is $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\}$. Therefore, $d_{c_2}(C_3 \circ \bar{K}_2, 9) = 1$. The minimum cardinality of $C_3 \circ \bar{K}_2$ is 9. Therefore, $\gamma_{c_2}(C_3 \circ \bar{K}_2) = 9$. Hence, $D_{c2}(C_3 \circ \bar{K}_2, x) = x^9$.

3. Conclusion

In this paper, the connected 2-domination polynomials has been derived by identifying its connected 2-dominating sets. It also help us to characterize the connected 2-dominating sets of cardinality *j*. We can generalize this study to any power of graphs.

References

- ^[1] S. Alikhani, *Dominating Sets and domination Polynomials* of *Graphs*, Ph.D.Thesis, University Putra Malaysia, March 2009.
- [2] B.V. Dhananjaya Murthy, G. Deepak and N.D. Soner, Connected Domination Polynomial of a graph, *International Journal of Mathematical Archieve*, 4(11)(2013), 90–96.
- [3] S. Alikhani and Y.H. Peng, Introduction to Domination Polynomial of a Graph, Ars Combinatoria, Available as arXiv:0905.2251 v1.[math.CO]14 May 2009.
- ^[4] C. Berge, : *Theory of Graphs and its Applications*, Methuen, London, 1962.
- [5] G. Chartand and P. Zhang, *Introduction to Graph Theory*, Mc GrawHill, Boston, Mass, USA, 2005.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

