Connected 2-domination polynomials of some graph operations

T. Anitha Baby ${ }^{1 *}$ and Y. A. Shiny ${ }^{2}$

Abstract

In this paper, we derive the connected 2-domination polynomials of some graph operations. The connected 2-domination polynomial of a graph G of order m is the polynomial $D_{c 2}(G, x)=\sum_{j=\gamma_{c_{2}}(G)}^{m} d_{c 2}(G, j) x^{j}$, where $d_{c 2}(G, j)$ is the number of connected 2-dominating sets of G of size j and $\gamma_{c 2}(G)$ is the connected 2-domination number of G.

Keywords

Corona, connected 2-dominating sets, connected 2-domination polynomials, connected 2-domination number.

AMS Subject Classification
 53C05.

1,2 Department of Mathematics, Women's Christian College, Nagercoil-629001, Kanyakumari District, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti-Tirunelveli-627012.
*Corresponding author: ${ }^{1}$ anithasteve@gmail.com; ${ }^{2}$ shinyjebalin@gmail.com
Article History: Received 12 October 2020; Accepted 29 December 2020

Contents

1 Introduction 2329
2 Connected 2-Domination Polynomials of Some graph Operations 2330
3 Conclusion 2332
References 2332

1. Introduction

Let $G=(V, E)$ be a simple graph of order, $|V|=m$. For any vertex $v \in V$, the open neighbourhood of v is the set $N(v)=\{u \in V / u v \in E\}$ and the closed neighbourhood of v is the set $N[v]=N(v) \cup\{v\}$. For a set $S \subseteq V$, the open neighbourhood of S is $N(S)=\cup_{v \in s} N(v)$ and the closed neighbourhood of S is $N(S) \cup S$.

A set $D \subseteq V$ is a dominating set of G, if $N[D]=V$ or equivalently, every vertex in $V-D$ is adjacent to atleast one vertex in D.

The domination number of a graph G is defined as the cardinality of a minimum dominating set D of vertices in G and is denoted by $\gamma(G)$.

A dominating set D of G is called a connected dominating set if the induced sub-graph $<D>$ is connected.

The connected domination number of a graph G is defined as the cardinality of a minimum connected dominating set D of vertices in G and is denoted by $\gamma_{c}(G)$.

Definition 1.1. A walk is called a trail if all the edges appearing in the walk are distinct. It is called a path, if all the vertices are distinct; P_{m} denotes a path on m vertices. A cycle is a closed trail in which the vertices are all distinct; C_{m} denotes a cycle on m vertices.
Definition 1.2. The complement \bar{G} of G is the graph whose vertex set is $V(G)$ and such that for each pair u, v of vertices of $G, u v$ is an edge of \bar{G} if and only if $u v$ is not an edge of G.
Definition 1.3. The complete graph on m vertices, denoted by K_{m} is the simple graph that contains exactly one edge between each pair of distinct vertices.

Definition 1.4. The corona of two graphs G_{1} and G_{2} is denoted by $G_{1} \circ G_{2}$, formed from one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, where the $j^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $j^{\text {th }}$ copy of G_{2}. The corona, $G \circ K_{1}$, in particular, is the graph constructed from a copy of G, where for each vertex $v \in V(G)$, a new vertex v^{\prime} and a pendant edge $v v^{\prime}$ are added.

Definition 1.5. Let G and H be two graphs. G adding H at u and v is defined as the graph with $V\left(G_{u} \oplus H_{v}\right)=V(G) \cup V(H)$ and $E\left(G_{u} \oplus H_{v}\right)=E(G) \cup E(H)+u v$ and is denoted by $G_{u} \oplus$ H_{v}. G joining H at u and v denoted by $G_{u} \odot H_{v}$ is obtained from $G_{u} \oplus H_{v}$ by contracting the edge $u v$.
Definition 1.6. Let G_{1} and G_{2} be two graphs. The composition of $G_{1}\left[G_{2}\right]$ is a graph with the vertex set $V_{1} \times V_{2}$ and
two vertices $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$ are adjacent if $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} or u_{1} is adjacent to v_{1}.

2. Connected 2-Domination Polynomials of Some graph Operations

In this section, we state the connected 2- domination polynomial and derive the connected 2 - domination polynomials of some graph operations.

Definition 2.1. Let G be a simple graph of order m with no isolated vertices. A subset $D \subseteq V$ is a 2-dominating set of the graph G if every vertex $v \in V-D$ is adjacent to atleast two vertices in D. A 2-dominating set is called a connected 2-dominating set if the induced subgraph $<D>$ is connected.

Definition 2.2. Let $D_{c 2}(G, j)$ be the family of connected 2dominating sets of the graph G with cardinality j. Then the connected 2-domination number of G is defined as the minimum cardinality taken over all connected 2-dominating sets of vertices in G and is denoted by $\gamma_{c 2}(G)$.

Definition 2.3. Let $D_{c 2}(G, j)$ be the family of connected 2dominating sets of the graph G with cardinality j and let $d_{c 2}(G, j)=\left|D_{c 2}(G, j)\right|$. Then the connected 2-domination polynomial $D_{c 2}(G, x)$ of G is defined as $D_{c 2}(G, x)=\sum_{j=\gamma_{c 2(G)}}^{|V(G)|}$ $d_{c 2}(G, j) x^{j}$, where $\gamma_{c 2}(G)$ is the connected 2-domination number of G.

Theorem 2.4. The connected 2-domination polynomial of $P_{2}\left[K_{m}\right]$ is $D_{c_{2}}\left(P_{2}\left[K_{m}\right], x\right)=(1+x)^{2 m}-(1+2 m x)$.

Proof. Let P_{2} be the path with order 2 and K_{m} be the complete graph with order m. Then, $P_{2}\left[K_{m}\right]$ has $2 m$ vertices.

Let $\left\{v_{1}, v_{2}\right\}$ be the vertices of P_{2} and $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ be the vertices of K_{m}.

Then, $V\left(P_{2}\left[K_{m}\right]\right)=\left\{\left(v_{1}, u_{1}\right),\left(v_{1}, u_{2}\right),\left(v_{1}, u_{3}\right), \ldots,\left(v_{1}, u_{m}\right),\left(v_{2}, u_{1}\right)^{\text {Therefore, } D_{c_{2}}}\left(P_{2}\left[K_{3}\right], x\right)=\sum_{j=\gamma_{c_{2}}\left(P_{2}\left[K_{3}\right]\right)}^{\mid V\left(P_{2}\left[K_{3}\right] \mid\right.} d_{c_{2}}\left(P_{2}\left[K_{3}\right], j\right) x^{j}\right.$ $\left.\left(v_{2}, u_{2}\right), \ldots,\left(v_{2}, u_{3}\right), \ldots,\left(v_{2}, u_{m}\right)\right\}$

The minimum cardinality of $P_{2}\left[K_{m}\right]$ is $\gamma_{c_{2}}\left(P_{2}\left[K_{m}\right]\right)=2$.
There are $\binom{2 m}{j}$ possibilities of connected 2-dominating sets of $P_{2}\left[K_{m}\right]$ of cardinality j.

Hence, $D_{c_{2}}\left(P_{2}\left[K_{m}\right], x\right)=\sum_{j=\gamma_{c_{2}}\left(P_{2}\left[K_{m}\right]\right)}^{\left|V\left(P_{2}\left[K_{2}\right]\right)\right|} d_{c_{2}}\left(P_{2}\left[K_{m}\right], j\right) x^{j}$
$=\sum_{j=2}^{2 m} d_{c_{2}}\left(P_{2}\left[K_{m}\right], j\right) x^{j}$
$=\binom{2 m}{2} x^{2}+\binom{2 m}{3} x^{3}+\binom{2 m}{4} x^{4}+\ldots+\binom{2 m}{2 m-1} x^{2 m-1}+\binom{2 m}{2 m} x^{2 m}$
$=\left[\sum_{j=0}^{2 m}\binom{2 m}{j} x^{j}\right]-1-2 m x$
Hence, $D_{c_{2}}\left(P_{2}\left[K_{m}\right], x\right)=(1+x)^{2 m}-(1+2 m x)$.

Example 2.5. For the graphs P_{2} and K_{3} given in Figure 1.3, the graph $P_{2}\left[K_{3}\right]$ is given in Figure 1.4.

Figure $1.4 P_{2}\left[K_{3}\right]$
The connected 2-dominating sets of $P_{2}\left[K_{3}\right]$ of cardinality 2 are $\{\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{2,3\},\{2,4\},\{2,5\}$, $\{2,6\},\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{4,6\},\{5,6\}\}$.

Therefore, $d_{c_{2}}\left(P_{2}\left[K_{3}\right], 2\right)=15$.
The connected 2-dominating sets of $P_{2}\left[K_{3}\right]$ of cardinality 3 are $\{\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,2,6\},\{1,3,4\},\{1,3,5\}$, $\{1,3,6\},\{1,4,5\},\{1,4,6\},\{1,5,6\},\{2,3,4\},\{2,3,5\},\{2,3,6\}$, $\{2,4,5\},\{2,4,6\},\{2,5,6\},\{3,4,5\},\{3,4,6\},\{3,5,6\},\{4,5,6\}\}$.

Therefore, $d_{c_{2}}\left(P_{2}\left[K_{3}\right], 3\right)=20$.
The connected 2 -dominating sets of $P_{2}\left[K_{3}\right]$ of cardinality 4 are $\{\{1,2,3,4\},\{1,2,3,5\},\{1,2,3,6\},\{1,2,4,5\},\{1,2,4,6\}$, $\{1,2,5,6\},\{1,3,4,5\},\{1,3,4,6\},\{1,3,5,6\},\{1,4,5,6\},\{2,3$, $4,5\},\{2,3,4,6\},\{2,3,5,6\},\{2,4,5,6\},\{3,4,5,6\}\}$.

Therefore, $d_{c_{2}}\left(P_{2}\left[K_{3}\right], 4\right)=15$.
The connected 2-dominating sets of $P_{2}\left[K_{3}\right]$ of cardinality 5 are $\{\{1,2,3,4,5\},\{1,2,3,4,6\},\{1,2,3,5,6\},\{1,2,4,5,6\},\{1,3$, $4,5,6\},\{2,3,4,5,6\}\}$.

Therefore, $d_{c_{2}}\left(P_{2}\left[K_{3}\right], 5\right)=6$.
The connected 2-dominating set of $P_{2}\left[K_{3}\right]$ of cardinality 6 is $\{1,2,3,4,5,6\}$.

Therefore, $d_{c_{2}}\left(P_{2}\left[K_{3}\right], 6\right)=1$.
Since, the minimum cardinality is $\left.2, \gamma_{(} c_{2}\right)\left(P_{2}\left[K_{3}\right]\right)=2$.
$=\sum_{j=2}^{6} d_{c_{2}}\left(P_{2}\left[K_{3}\right], j\right) x^{j}$
$=15 x^{2}+20 x^{3}+15 x^{4}+6 x^{5}+x^{6}$.
Hence, $D_{c_{2}}\left(P_{2}\left[K_{3}\right], x\right)=(1+x)^{6}-(1+6 x)$.
Theorem 2.6. The connected 2-domination polynomial of $C_{m} \odot C_{n}$ is
$\xrightarrow[x^{m+n-1} .]{D_{c_{2}}\left(C_{m} \odot C_{n}, x\right)=2(m+n-4) x^{m+n-3}+(m+n-2) x^{m+n-2}+}$
Proof. Let $\left\{u_{1}, u_{2}, \ldots, u_{m-1}, u\right\}$ be the vertex set of C_{m} and let $\left\{v_{1}, v_{2}, \ldots, v_{n-1}, v\right\}$ be the vertex set of C_{n}. Therefore,
$\left\{u_{1}, u_{2}, \ldots, u_{m-1}, u=v, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ be the vertex set of $C_{m} \odot C_{n}$.

Hence, $C_{m} \odot C_{n}$ has $m+n-1$ vertices.
There is no connected 2-dominating sets of cardinality less than $m+n-3$.

There are $2(m+n-4)$ connected 2 -dominating sets of cardinality $m+n-3$.
Therefore, $d_{c_{2}}\left(C_{m} \odot C_{n}, m+n-3\right)=2(m+n-4)$.
There are $m+n-2$ connected 2-dominating sets of cardinality $m+n-2$.
Therefore, $d_{c_{2}}\left(C_{m} \odot C_{n}, m+n-2\right)=m+n-2$.
There is only one connected 2-dominating sets of cardinality $m+n-1$.
Therefore, $d_{c_{2}}\left(C_{m} \odot C_{n}, m+n-1\right)=1$.
Since, the minimum cardinality is $m+n-3, \gamma_{c_{2}}\left(C_{m} \odot C_{n}\right)=$ $m+n-3$.
Therefore, $D_{c_{2}}\left(C_{m} \odot C_{n}, x\right)=\sum_{j=m+n-3}^{m+n-1} d_{c_{2}}\left(C_{m} \odot C_{n}, j\right) x^{j}$

$$
\begin{aligned}
= & d_{c_{2}}\left(C_{m} \odot C_{n}, m+n-3\right) x^{m+n-3}+ \\
& d_{c_{2}}\left(C_{m} \odot C_{n}, m+n-2\right) x^{m+n-2}+ \\
& d_{c_{2}}\left(C_{m} \odot C_{n}, m+n-1\right) x^{m+n-1}
\end{aligned}
$$

Hence, $D_{c_{2}}\left(C_{m} \odot C_{n}, x\right)=2(m+n-4) x^{m+n-3}+(m+n-$ 2) $x^{m+n-2}+x^{m+n-1}$.

$$
\begin{aligned}
& =\sum_{j=4}^{6} d_{c_{2}}\left(C_{3} \odot C_{4}, j\right) x^{j} \\
& =6 x^{4}+5 x^{5}+x^{6} .
\end{aligned}
$$

Hence, $D_{c_{2}}\left(C_{3} \odot C_{4}, x\right)=6 x^{4}+5 x^{5}+x^{6}$.
Theorem 2.8. The connected 2-domination polynomial of $C_{m} \oplus C_{n}$ is $D_{c_{2}}\left(C_{m} \oplus C_{n}, x\right)=2(m+n-4) x^{m+n-2}+(m+n-$ 2) $x^{m+n-1}+x^{m+n}$.

Proof. Let $\left\{u_{1}, u_{2}, \ldots, u_{m-1}, u\right\}$ be the vertex set of C_{m} and $\left\{v_{1}, v_{2}, \ldots, v_{n-1}, v\right\}$ be the vertex set of C_{n}.
Therefore, $\left\{u_{1}, u_{2}, \ldots, u_{m-1}, u, v, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ be the vertex set of $C_{m} \oplus C_{n}$.
Hence, $C_{m} \oplus C_{n}$ has $m+n$ vertices.
There is no connected 2-dominating sets of cardinality less than $m+n-2$.
There are $2(m+n-4)$ connected 2 -dominating sets of cardinality $m+n-2$.
Therefore, $d_{c_{2}}\left(C_{m} \oplus C_{n}, m+n-2\right)=2(m+n-4)$.
There are $m+n-2$ connected 2 -dominating sets of cardinality $m+n-1$.
Therefore, $d_{c_{2}}\left(C_{m} \oplus C_{n}, m+n-1\right)=m+n-2$.
There is only one connected 2-dominating set of cardinality $m+n$.
Therefore, $d_{c_{2}}\left(C_{m} \oplus C_{n}, m+n\right)=1$.
Since, the minimum cardinality is $m+n-2, \gamma_{c_{2}}\left(C_{m} \oplus C_{n}\right)=$ $m+n-2$.
Therefore,

$$
\begin{aligned}
& D_{c_{2}}\left(C_{m} \oplus C_{n}, x\right)= \sum_{j=m+n-2}^{m+n} d_{c_{2}}\left(C_{m} \oplus C_{n}, j\right) x^{j} \\
&= d_{c_{2}}\left(C_{m} \oplus C_{n}, m+n-2\right) x^{m+n-2}+ \\
& d_{c_{2}}\left(C_{m} \oplus C_{n}, m+n-1\right) x^{m+n-1}+ \\
& d_{c_{2}}\left(C_{m} \oplus C_{n}, m+n\right) x^{m+n} \\
& \text { Hence, } D_{c_{2}}\left(C_{m} \oplus C_{n}, x\right)=2(m+n-4) x^{m+n-2}+(m+n- \\
&2) x^{m+n-1}+x^{m+n} .
\end{aligned}
$$

Example 2.9. For the graphs C_{3} and C_{4} given in Figure 1.7 the graph $C_{3} \oplus C_{4}$ is given in Figure 1.8.

There is no connected 2-dominating sets of $C_{3} \oplus C_{4}$ of are $\left\{\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{5}, v_{6}\right\},\left\{v_{1}, v_{3}\right.\right.$ eardinality 2,3 and 4.
$\left.\left.v_{4}, v_{5}, v_{6}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}\right\}$.
Therefore, $d_{c_{2}}\left(C_{3} \odot C_{4}, 5\right)=5$.
The connected 2-dominating set of $C_{3} \odot C_{4}$ of cardinality 6 is $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$.
Therefore, $d_{c_{2}}\left(C_{3} \odot C_{4}, 6\right)=1$.
Since, the minimum cardinality is $4, \gamma_{c_{2}}\left(C_{3} \odot C_{4}\right)=4$.
Therefore, $D_{c_{2}}\left(C_{3} \odot C_{4}, x\right)=\sum_{j=\gamma_{c_{2}}\left(C_{3} \odot C_{4}\right)}^{\left|V\left(C_{3} \odot C_{4}\right)\right|} d_{c_{2}}\left(C_{3} \odot C_{4}, j\right) x^{j}$

The connected 2-dominating sets of $C_{3} \oplus C_{4}$ of cardinality 5 are
$\left\{\left\{v_{1}, v_{3}, v_{4}, v_{5}, v_{6}\right\},\left\{v_{1}, v_{3}, v_{4}, v_{5}, v_{7}\right\},\left\{v_{1}, v_{3}, v_{4}, v_{6}, v_{7}\right\},\left\{v_{2}\right.\right.$, $\left.\left.v_{3}, v_{4}, v_{5}, v_{6}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{7}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{6}, v_{7}\right\}\right\}$.
Therefore, $d_{c_{2}}\left(C_{3} \oplus C_{4,5}\right)=6$.
The connected 2-dominating sets of $C_{3} \oplus C_{4}$ of cardinality 6 are $\left\{\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{7}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}\right.\right.$,
$\left.\left.v_{7}\right\},\left\{v_{1}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}\right\}$.
Therefore, $d_{c_{2}}\left(C_{3} \oplus C_{4,6}\right)=5$.
The connected 2-dominating set of $C_{3} \oplus C_{4}$ of cardinality 7 is $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$.
Therefore, $d_{c_{2}}\left(C_{3} \oplus C_{4,7}\right)=1$.
Since, the minimum cardinality is 5, $\gamma_{c_{2}}\left(C_{3} \oplus C_{4}\right)=5$.
Therefore, $D_{c_{2}}\left(C_{3} \oplus C_{4}, x\right)=\sum_{j=\gamma_{c_{2}}\left(C_{3} \oplus C_{4}\right)}^{\left|V\left(C_{3} \oplus C_{4}\right)\right|} d_{c_{2}}\left(C_{3} \oplus C_{4}, j\right) x^{j}$
$=\sum_{j=5}^{7} d_{c_{2}}\left(C_{3} \oplus C_{4}, j\right) x^{j}=6 x^{5}+5 x^{6}+x^{7}$.
Hence, $D_{c_{2}}\left(C_{3} \oplus C_{4}, x\right)=6 x^{5}+5 x^{6}+x^{7}$.
Theorem 2.10. Let G be any connected graph with m vertices. Then, $D_{c_{2}}\left(G \circ K_{1}, x\right)=x^{2 m}$.

Proof. Since, G has m vertices, $G \circ K_{1}$ has $2 m$ vertices. There is no connected 2-dominating set of cardinality less than $2 m$.
Clearly, $\left\{v_{1}, v_{2}, \ldots, v_{2 m}\right\}$ is the only connected 2-dominating set of $G \circ K_{1}$.
Therefore, $\gamma_{c_{2}}\left(G \circ K_{1}\right)=2 m$ and $d_{c_{2}}\left(G \circ K_{1}, 2 m\right)=1$.
Hence, $D_{c_{2}}\left(G \circ K_{1}, x\right)=x^{2 m}$.
Example 2.11. Consider the graph $C_{4} \circ K_{1}$ given in Figure 1.9

There is no connected 2-dominating sets of $C_{4} \circ K_{1}$ of cardinality $2,3,4,5,6$ and 7.
The connected 2-dominating set of $C_{4} \circ K_{1}$ with cardinality 8 is $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$.
Therefore, $d_{c_{2}}\left(C_{4} \circ K_{1}, 8\right)=1$.
The minimum cardinality of $C_{4} \circ K_{1}$ is 8 .
Therefore, $\gamma_{c_{2}}\left(C_{4} \circ K_{1}, x\right)=8$.
Hence, $D_{c 2}\left(C_{4} \circ K_{1}, x\right)=x^{8}$.
Theorem 2.12. Let G be a simple graph of order n. Then the connected 2-domination polynomial of $G \circ \bar{K}_{m}$ is $D_{c_{2}}(G \circ$ $\left.\bar{K}_{m}\right)=x^{n(m+1)}$.

Proof. G has n vertices and \bar{K}_{m} has m vertices. $G \circ \bar{K}_{m}$ has $n(m+1)$ vertices.

Any set S of cardinality less than $n(m+1),<s>$ is not a connected 2-dominating set. Also, the connected 2-domination number of $G \circ \bar{K}_{m}$ is $n(m+1)$.

Hence, $D_{c 2}\left(G \circ \bar{K}_{m}, x\right)=x^{n(m+1)}$.

Example 2.13. Consider the graph $C_{3} \circ \bar{K}_{2}$ given in Figure 1.10

There is no connected 2-dominating sets of $C_{3} \circ \bar{K}_{2}$ of cardinality 2,3,4,5,6,7 and 8.
The connected 2-dominating set of $C_{3} \circ \bar{K}_{2}$ with cardinality 9 is $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$.
Therefore, $d_{c_{2}}\left(C_{3} \circ \bar{K}_{2}, 9\right)=1$.
The minimum cardinality of $C_{3} \circ \bar{K}_{2}$ is 9 .
Therefore, $\gamma_{c_{2}}\left(C_{3} \circ \bar{K}_{2}\right)=9$.
Hence, $D_{c 2}\left(C_{3} \circ \bar{K}_{2}, x\right)=x^{9}$.

3. Conclusion

In this paper, the connected 2-domination polynomials has been derived by identifying its connected 2 -dominating sets. It also help us to characterize the connected 2-dominating sets of cardinality j. We can generalize this study to any power of graphs.

References

${ }^{[1]}$ S. Alikhani, Dominating Sets and domination Polynomials of Graphs, Ph.D.Thesis, University Putra Malaysia,March 2009.
${ }^{[2]}$ B.V. Dhananjaya Murthy, G. Deepak and N.D. Soner, Connected Domination Polynomial of a graph, International Journal of Mathematical Archieve, 4(11)(2013), 90-96.
${ }^{[3]}$ S. Alikhani and Y.H. Peng, Introduction to Domination Polynomial of a Graph, Ars Combinatoria, Available as arXiv:0905.2251 v1.[math.CO]14 May 2009.
${ }^{\text {[4] }}$ C. Berge, : Theory of Graphs and its Applications, Methuen, London, 1962.
${ }^{\text {[5] G. Chartand and P. Zhang, Introduction to Graph Theory, }}$ Mc GrawHill, Boston, Mass, USA, 2005.

```
ISSN(P):2319-3786
```

Malaya Journal of Matematik
ISSN(O):2321 - 5666

* $\star \star \star \star \star \star \star \star$

